Monday, January 27, 2020

Nipah Virus and the Potential for Bioterrorism

Nipah Virus and the Potential for Bioterrorism Nipah Virus and the Potential for Bioterrorism Introduction Bioterrorism is considered to be one of the most talked about issues with regard to national security since the inception of the new millennium. On September 11, 2001 (9/11) terrorism struck the United States with the crashing and attempted crashing of airplanes into significant economic and political buildings. This act of terror was a significant beginning to fears of what was next from terrorist groups. Even though this was not the first, and definitely not the last, terrorist threat or attempt it was definitely the most profound and unquestionably caused fear, panic and social disruption much less economic issues globally. Within days of the 9/11 attacks the awareness of American vulnerability became more evident with the media publicity of the Anthrax scares. This brought about international concerns with bioterrorism as envelopes that were filled with anthrax spores were sent to political and media sources throughout the United States and twenty-two people were infected and five deaths occurred (Ryan Glarum, 2008). Nipah is just one of many viruses that are available to terrorist groups for development as a bioweapon. In 1999 this virus was first found and noted to be very easily disseminated to humans through inhalation and ingestion. Even though there are many potential pathogens available, the Nipah virus has proven itself to be one of the most dangerous and advantageous . As the Nipah virus progressed there was fear noted by workers, families and healthcare providers in southern Asia. With a mortality rate of 40% to 100% (Lam, 2002; World Health Organization [WHO], 2009) in infected areas, and an economic impact that cost several millions to Malaysias economy, this virus has potential for significant bioterrorism. Natural History The Nipah Virus (NiV), family paramyxoviridae, was first recognized in Malaysia, South Asia in late 1998 into Spring 1999. This disease was recognized when an outbreak of sickness and death occurred among pig farmers, it infected 265 people, with 105 deaths, a mortality rate of approximately 40% (Lam, 2002). This virus was new to the scientific community and first thought to be Japanese Encephalitis (JE) which had occurred in approximately the same location years earlier. JE was also noted to infect people that were around domesticated pigs, just like the currently identified Nipah Virus (Center for Disease Control [CDC], 2001). The Nipah virus was found to also have similar symptoms as those of the Hendra Virus which caused respiratory disease and encephalitis in Australia in 1994 (Fraser, 2009). The Nipah virus is considered by the CDC as a newly emerging pathogen that could be engineered for mass dissemination (Ryan Glarum, 2008; Center for Disease Control and Prevention [CDC], n.d.). Since the onset of the Nipah virus in 1999, according to the World Health Organization (WHO), there have been twelve significant outbreaks since the initial, with 202 persons infected and a loss of life of 146 individuals, mortality of over 72%. Two of these outbreaks, one in India in 2007 and one in Bangladesh in 2008 had mortality rates of 100%, showing the devastating effects of this virus (WHO, 2009). The initial investigation of the Nipah virus found that abattoir workers who dealt with pigs daily and those that were exposed through farming and transporting pigs were getting ill. As the investigation continued it found that the pigs were infecting the workers (zoonotic disease). After discovery, subsequently over 1.1 million pigs were disposed of to quell the transmission of the virus. This destruction of pigs was significantly devastating to the economy of Malaysia noting an estimated loss of $217 million dollars (Ryan Glarum, 2008, p. 104). Virus Transference The Nipah virus host was found to be pteropid bats (flying foxes), located in Australia and the southern areas of Asia. During expansion of farms toward the rainforests and the destruction of the rainforest for manufacturing and industry, many animals including bats had to relocate to survive. Many pig farmers in Malaysia also had large fruit orchards situated next to the pig enclosures, as growth of pig farming continued and the loss of habitat for bats persisted to change bats started to forage the nearby orchards for food. As this progression continued there was an increased chance of disease contamination to domestic animals from wildlife, and as such a significant increase in contact between pigs and bats. Therefore, greater opportunity for transmission of the Nipah virus (â€Å"Dr. Jonathan Epstein Returnsâ€Å", 2005). As the Nipah virus was investigated it was believed to have been transmitted to pigs from bats through the saliva, urine and feces of the bats which feed and nest in local orchards (â€Å"Dr. Jonathan Epstein Returnsâ€Å", 2005), near pig pens. This potential transmission probably occurred when bat secretions fell into the pig pens and were ingested by these domesticated animals. The initial human virus outbreak in Malaysia and Singapore was believed to have been from direct contact with sick pigs or their meat products, and possibly could have come from the consumption of contaminated fruit or juices from the orchards. As the virus progressed and research was done there was an established link noting person-to-person contamination through close contact (World Health Organization [WHO], 2009) Physiology of Exposure The Nipah virus seems to have many different clinical manifestations in individual animals and humans. There is a broad range of clinic signs that can point to virus infection that cause researchers and healthcare providers to not recognize patterns of initial infection, therefore not recognizing potential disease outbreaks. According to the WHO (2009), the incubation period (interval from infection to onset of symptoms) varies from four to 45 days. This significant range makes it incredibly hard to follow the virus between initial exposure and medical treatment. Recognizing that the person is showing signs of a virus, and narrowing down the specific virus, then treating it appropriately for an individual is a challenge but feasible. But with such a wide incubation period there is a possibility that viable information could be lost or not noticed. The physiological symptoms of this virus in humans is characterized by non-specific signs and symptoms to include severe headache, fever, vomiting, myalgia (muscular pain) disorientation, respiratory diseases, neurological deficits and encephalitis and in many cases may cause coma or death (Center for Infectious Disease Research Policy [CIDRAP], 2009). In pigs there is characterization of signs and symptoms depending on the age of the animal. The basic signs noted are fever, shortness of breath, muscle twitching, trembling, rear leg weakness, severe coughing, open-mouth breathing, abnormal posturing and convulsions (CIDRAP, 2009). After initial exposure and treatment follow-up research was done and in this study it was noted that there were relapses in clinic symptoms to include encephalitis up to twenty-two months later, without re-exposure. The research and that an estimated 160 patients who recovered from acute encephalitis and 89 patients who experienced asymptomatic infection received follow-up care for ‘late-onset encephalitis (neurological manifestations occurring for the first time at ten or more weeks after initial infection) or ‘relapsed encephalitis (neurological manifestations after recovery from acute encephalitis) (Halpin Mungall, 2007, p. 290). Host Sources The Nipah Virus source comes from Pteropus fruit bats (AKA: Flying Foxes), which are found in Southern Asia and Australia. In 1997 fruit bats were noted to begin foraging on flowers and nectar in trees located near orchards contiguous to infected areas (Cobey, 2005). Fruit bats were found to be the natural source of this virus and caused the transfer of the virus to pigs and human beings. As domesticated pigs were sold for breeding and transferred to other farms the virus was quickly disseminated further throughout southern Asia (Cobey, 2005). Possible Use in Biowarfare Biowarfare, and in this day and age bioterrorism, is a threat that began before the birth of Christ. According to Dr. Michael D. Phillips, M.D. one of the first recorded incidents [of bioterrorism]was in Mesopotamia. The Assyrians employed rye ergot, an element of the fungus Claviceps purpurea, which contains mycotoxins. Rye ergot was used by Assyria to poison the wells of their enemies, with limited success (Phillips, 2005, p. 32). Use of pathogens to induce sickness, death or terror has continued until present time. The Centers for Disease Control and Prevention (CDC) has listed the Nipah virus as a critical biological agent, Category C. Category C agents are emerging pathogens that could be engineered for mass dissemination in the future because of: * Availability * Ease of production and dissemination * Potential for high morbidity and mortality rates and major health impact (Center for Disease Control and Prevention [CDC], n.d.,  ¶ 3; (Ryan Glarum, 2008, p. 105)) With this categorization the virus is a living pathogen that can be developed as a bioweapon with the right knowledge, and equipment. For the virus to be weaponized it needs to be purified, stabilized and properly sized. Since this is a living virus the bioterrorist agent can be replicated once disseminated (Ryan Glarum, 2008). At this time, there is no information about how this virus could be manufactured to become a bioterrorist agent, but with the right knowledge the potential is there. Production Methods Since the Nipah virus has proven to be disseminated through secretions from bats and pigs, and shown to cause severe infection and death it can potentially be used as a bioterrorist agent with little changes in its basic state. If the excretions from infected bats in palm juice can cause infection and death then there is ease in distribution with a significant amount of virus. Even with these basic distribution methods there is information about the Nipah virus and its compounds being published. As knowledge continues be found about the virus and information availability of the compounds there is potential for virus manipulation for maximum threat to animals and humans to induce fear and panic. Information such as this is noted in an article by Medical News Today, (2005). This article states that UCLA scientists have revealed how the Nipah virus infiltrates human cells. The article further states the virus exploits a protein that is essential to embryonic development to enter cells and attack. The virus must infect a cell by binding to a viral-specific receptor and once that is done penetrates the cell. The article actually gives the receptor name as Ephrin-B2, and is found to be the key to unlocking these dangerous cells. If this information is so easily accessible and is available it allows terrorists groups with the knowledge and expertise to manipulate the virus for dissemination and extreme virulence. The Nipah virus is still a relatively new virus and steps are slowly being made in understanding this infant virus. As of this time there is very little knowledge about how effective this virus would be or what would be needed to make it infective. With bioterrorist there is always a concern with the storage and stability of the virus for development and weaponization. As developments are made and intelligence is gathered with regard to potential agents there will be a concern with any viral pathogen. Transmissibility Animal-to-human Animal (pig) to human transmissibility was the first noted issue with regard to the detection of the Nipah virus in 1999. As stated earlier the virus spread rapidly and was found to have started with pig farmers and abattoir workers that worked closely and handled these animals. As the virus progressed and workers died it was found that pigs in these farms had been coughing loudly (bark type of cough), and nerve damage was becoming prevalent. In a short amount of time approximately five percent of these animals died and the illness was spreading significantly (Pearl, 2006). Also transmissibility has been noted from non-specific animal contact put through the ingestion of date palm juice taken from the trees that bats nest and feed. As the fruit tree workers and farmers gather the palm juice through clay pots bats drink from the pots and transfer saliva to the nectar (Pearl, 2006). Person-to-person Many of the articles written on the Nipah virus states that there is no evidence that there is transmissibility of the virus from person-to-person. In contrast, according to a research investigation done during a Bangladeshi outbreak in 2004, there is definitive evidence that the Nipah virus can be transmitted from person-to-person (Gurley et al., July 2007). According to the research, subsequent investigations in India and Bangladesh have suggested that Nipah virus may have been transmitted from person-to-person. During an outbreak in 2001in India, 75% of the patients, including fourteen healthcare workers, had a history of hospital exposure to patients infected with Nipah virus (Gurley et al., July 2007), with no other exposure risks noted. The exposure, and subsequent virus, occurred with persons who lived with or cared for the patients, and persons who were in close contact for a significant amount of time. According to a research article published by the CDC, the Nipah virus can be transmitted from person-to-person. The article states, in a densely populated area a lethal virus could rapidly spread before effective interventions are implemented. This spread would provide the seed for a substantial regional or global public health problem (Gurley et al., 2007, p. 1036). According to Gurley et al., 2007 there is significant evidence that person-to-person contact will cause infection. The person-to-person transmissibility factors include having (1) touched or received a cough or sneeze in the face, (2) any contact with someone who later died, was febrile, unconscious, or had respiratory difficulty, and (3) visited the home, and possibly, the village an infected person. The most significant evidence of person-to-person infections was with a religious leader where twenty-two persons who had became infected after close contact. The religious leader was moved to his home and eight members of his household became infected. Two brothers who lived a significant distance away were infected after only a six hour visitation, son-in-law and daughter who lived only about one hour away and eleven other followers of the leader contracted the disease after contact (Gurley et al., 2007) with no noted other infection means. Surface-to-person To this date there is no evidence of any transfer of the virus to persons from surface contact, in fact how long the virus remains infectious on environmental surfaces is not known. In an article written by (Gurley et al., 2007) collection of 468 environmental specimens were gathered through swabbing of potential surfaces that included walls, bed frames, mattresses, floors and utensils in hospital rooms and residences of infected individuals. Also collected were swabs from trees, fruits, excrement and other surfaces around possible bat foraging sites. With all of this gathered specimens the only information obtained was that the infected individuals shed the virus into the environment, showing potential for transmission, but no evidence was found that surfaces caused any positive infection to another person. Potential for contagion and considerations relative to Biodefense The Nipah virus has the potential to be a very detrimental bioweapon of choice for domestic or international terrorists. With the virus being zoonotic (disease which can be transmitted to humans from animals, [â€Å"Zoonosisâ€Å", 2009]), which effects animals and humans, and the ease of transmission from the saliva and urine of fruit bats to these two groups the potential for a Potential for contagion and considerations relative to biodefense According to Kortepeter and Parker (Kortepeter Parker, 1999), for a biological agent to be used for a greatest plausible occurrence, an agent must have specific properties: * the agent should be highly lethal and easily produced in large quantities * Given that the aerosol route is the most likely for a large-scale attack, stability in aerosol and capability to be dispersed (17,000 to 5,000 nanometers (nm) particle size) are necessary * being communicable from person-to-person, and * having no treatment or vaccine In using the above criteria the Nipah virus would make a credible biological threat for a domestic or international terrorist group. Host bats being plentiful in Australia and southern Asia would make it easy to obtain the saliva, feces or urine of these hosts for initial development of the virus. The Nipah virus being 150 to 200 nm in diameter and 10,000 to 10,040 nm long (CIDRAP, 2009,  ¶ 3), it could be used in an aerosol form for dispersement. According to Gurley et al., there is significant evidence that there is person-to-person communicability and according to the WHO, there are currently no drugs or vaccines available to treat Nipah virus infection. Intensive supportive care with treatment of symptoms is the main approach to managing the infection in people (2009,  ¶8 ). Conclusion The Nipah virus should be a concern for any government as a potential for a bioterrorist attack. As with the 9/11 and the anthrax attacks in 2001 there could be significant fear, panic, economic issues and social disruption if this virus was used. With a mortality rate of 40% to 100% (Lam, 2002; WHO, 2009), and an incubation period of up to 45 days (WHO, 2009), this could definitely be a pathogen of choice for terrorists. The ease of access to the virus itself from fruit bats, to pigs and to humans, not to mention the transmissibility ease through inhalation and ingestion, makes this the perfect biological weapon. The disease this virus manifests, from flu type symptoms to severe encephalitis, will cause significant fear to the public and will stress healthcare facilities if a large outbreak occurs. This virus also has no known cure as of this date, even though there are developments in that direction. The Nipah virus needs to continue to be monitored and treatment options along with vaccine development needs to be continuous until this threat is diminished. References Biological Warfare. (2009). In Wikipedia. Retrieved December 25, 2009, from http://en.wikipedia.org/wiki/Biological_warfare Center for Disease Control and Prevention. (2001). Japanese Encephalitis. Retrieved from http://www.cdc.gov/ncidod/dvbid/jencephalitis/qa.htm Center for Disease Control and Prevention. (n.d.). Emergency Preparedness and Response: Bioterrorism; Category C Agents. Retrieved from http://emergency.cdc.gov/agent/agentlist-category.asp Center for Infectious Disease Research Policy. (2009). Nipah Virus. Retrieved December 25, 2009, from http://www.cidrap.umn.edu/cidrap/content/biosecurity/ag-biosec/anim-disease/nipah.html Cobey, S. (2005). Nipah Virus: Natural History. Retrieved from The Henipavirus Ecology Collaborative Research Group: http://www.henipavirus.org/virus_and_host_info/nipah_virus_natural_history.htm Dr. Jonathan Epstein Returns from Studies of Nipah Virus in Malaysia. (2005). Retrieved from http://www.wildlifetrust.org/news/66-dr_jonathan_epstein_returns_from_studies_of_nipah_virus_in_malaysia Enserink, M. (2004, February 20). Nipah virus (or a cousin) strikes again. Science, 303.5661, 1121. Retrieved from Academic OneFile. Web. 24 Dec. 2009. . Field, H., Young, P., Yob, J. M., Mills, J., Hall, L., Mackenzie, J. (2001). The natural history of Hendra and Nipah viruses. Microbes and Infection, 3, 307-314. doi: 10.1016/S1286-4579(01)01384-3 Fraser, L. (2009, November 16, 2009). Is Hendra and Hipah a threat to US?. Ticker. Retrieved from http://www.theticker.org/about/2.8220/is-hendra-and-nipah-a-threat-to-us-1.2085160 Gurley, E. S., Montgomery, J. M., Hossain, M. J., Bell, M., Azad, A. K., Islam, M. R., Rahim Molla, M. A., Breiman, R. F. (July 2007). Person-toperson transmission of Nipah virus in a Bangladeshi Community. Retrieved from Centers for Disease Control and Prevention: http://www.cdc.gov/eid/content/13/7/1031.htm Gurley, E. S., Montgomery, J. M., Hossain, M. J., Bell, M., Azad, A. K., Rota, P. A., Lowe, L., Breiman, R. F. (2007). Person-to-person transmission of Nipah Virus in the Banglashi Community. Retrieved from www.cdc.gov/eid Halpin, K., Mungall, B. A. (2007). Recent progress in henipavirus research. Science Direct; Com ¶tive Immunology, Microbiology Infectious Diseases, 30, 287-307. Kortepeter, M. G., Parker, G. W. (1999). Potential biological weapons and threats. Retrieved from http://www.cdc.gov/ncidod/EID/vol5no4/kortepeter.htm Lam, S. (2002). Nipah virus A potential agent of bioterrorism? (Antiviral research 57). Retrieved from Science Direct: http://www.sciencedirect.com.lib-proxy.jsu.edu/science?_ob=MImg_imagekey=B6T2H-47MJ4XH-3-1_cdi=4919_user=446480_orig=search_coverDate=01%2F31%2F2003_sk=999429998view=cwchp=dGLbVtb-zSkzSmd5=464c2420befda40589fa6aef4b45cc20ie=/sdarticle.pdf Lowrey, C. H. (2010, February 10, 2010). Application of Gene Therapy Strategies to Offensive and Defensive Biowarfare (White Paper). Retrieved from Dartmouth Medical School: http://engineering.dartmouth.edu/ethreats/whitepapers/Lowery.html Medical News Today. (2005). UCLS scientists reveal how Nipah virus infects cells. Retrieved from http://www.medicalnewstoday.com/articles/27038.php Pearl, M. C. (2006, September 2006). The potential pandemic youve never heard of. Discover, 27 (9), 26-27. Phillips, M. B. (2005). Bioterrorism: A Brief History. Northeast Florida Medicine, 32-35. Retrieved from www.dcmsonline.org/jax-medicine/2005journals/bioterrorism/bioterrorism_history.pdf Ryan, J. R., Glarum, J. F. (2008). Biosecurity and Bioterrorism. Burlington, MA: Elsevier, Inc.. Wong, K. T., Shieh, W., Abdullah, W., Guarner, J., Goldsmith, C. S., Chua, K. B., Lam, S. K., Zaki, S. R. (2002, December). Nipah virus infection: Pathology and pathogenesis of an emerging paramyxoviral zoonosis. American Journal of Pathology, 161 (6), 2153-2167. doi: Retrieved from World Health Organization. (2009). Chronology of Nipah virus outbreaks. Retrieved from World Health Organization: http://www.who.int/mediacentre/factsheets/nipah_chronology_en.pdf World Health Organization. (2009). Nipah Virus. Retrieved from http://www.who.int/mediacentre/factsheets/fs262/en/ Zoonosis. (2009). In Zoonosis. Retrieved from http://encarta.msn.com/encnet/features/dictionary/DictionaryResults.aspx?lextype=3search=zoonosis

Sunday, January 19, 2020

Sa Vidya Ya Vimuktaye

Cognitionll saa iva_aa yaa ivamau>yao ll That is knowledge which Liberates! Dear friends, do you know the meaning of this famous â€Å"Sanskrit† quotation? I’ll explain it to you. Generally we call vidya to everything which gives some knowledge. There are many types of vidya which we can learn in this world. Among these, one is . And according to the scriptures â€Å" † alone liberates the human being. One can get Mukti from this world, Because of knowing & experiencing the .The meaning of getting â€Å"Mukti† is not dying, but getting true knowledge of Atman & Paramatman. It is like waking up from a dream. Because after getting Mukti a human being knows that everything we experience in this world is like a dream & it is not true. And so, I am different from what I feel or think now in this world. I am Aatman & not what I am called by everybody. The person who is mukta, is called the â€Å"Enlightened One† (Aatmasaakshaatkaari). That means He knows this world as a play or a dream. He fully knows that this sharir / deh is not me, I am Atman.Like in a dream nobody can do anything to me because nobody knows me, who I am. Dream is an illusion. In our dream anything can happen anywhere & we are present everywhere, we know everything, we are saakshi of every moment in the dream, because it is our dream. Likewise in this world also what we experience is our own experience. â€Å"Pindi Te Brahmaandi† Pind experiences only what is his feelings & nothing else like we experience in a dream. Each one's life is special for that pind. Experience of two persons are never the same. Each ; every person think differently. Pinde Pinde matirbhinnaa † Each person has got different mati. It is a long process for a pind to achieve mukti As our saints say the pind has to undergo 84 lacs of births for mukti. That is why we have to try for mukti in this very birth. Because nardeh only can try for mukti. Simple Meaning Of Mukti : When we are awake from a dream we understand that we were watching a dream in our sleep. And nothing has happened as seen in the dream. It was my illusion. In the dream, I was thinking all (which is happening there) as a real.I was experiencing all that with attachment, but now I’m awake from that illusion & now I can understand that I am different from what I was in my dream. That’s why whatever I had experienced in the dream was everything false & I understand now that nothing has happened to me. In the same way what we experience here in this world is not happening to me because I am very different from what I’m experiencing here as myself. This body, my name, my family, my status, my education, my colour, my looks, my habits, my home†¦.. all these things are not mine. I am very different from all these things.I am Atman which is bound in this deh. When this deh will be perished / dead all these things will disappear & only I (the Aatman) will remain. Atman has to try to come out or to be free from this deh without any harm to this body that is called mukti. This is an exact meaning of mukti. When the Atman comes out of this deh without any damage to it, it is mukti from this world. He can have the knowledge of all Brahmand that means he can have gyan of everything like divine. He will be totally blissful, all pervading, omnipotent. All the God’s adjectives can be put before his name.Atmagyani saints are all mukta, as they have seen their own Atman out of their body in this very birth. If man / human being has got this capacity to see the Atman out of his body (Aatmasaakshaatkaar) & be free from all bondages, then why not try for the same, in this very birth? Easiest Way For Attaining Mukti : †¦Ã¢â‚¬ ¦ Bhakti is the easiest way towards mukti. The person who does bhakti becomes pure minded. Mind has the power or potential to pure itself when it comes into contact with God.When mind comes in contact with God, wi th feelings, it is out of the effect of time & space. Time & space doesn’t affect the mind & body each time when it comes in contact with God with love. See the persons who love God, they look younger than others. His mind also is truly pure. That means he /she skips the time in his/her life by contacting God the Parmaatman with love. This is a magic mantra to be young. But my dear friends for that we must have a pure heart. then only it CAN happen. You can also see the Yogins & Bhaktas, how young they look.We can never make-out the age of Yogins & true Bhaktas i. e. Saints. || SA VIDYA YA VIMUKTAYE || That is knowledge which Liberates! Dear friends do you know tha meaning of this famous â€Å"Sanskrit† question? I’ll explain it to you. Generally we call vidya to everything which gives some knowledge about anything. There are 64 types of Arts which we can learn in this world, according to the scriptures. Among these 64 kata, one is Adhyatma Vidya. And it is writ ten in the Hindu sciptures that â€Å"Adhyatma Vidya† only is a Vidya because it liberates the human being.Because of it’s knowledge one can get Mukti from this world. The meaning of getting â€Å"Mukti† is not dying, but getting true knowledge of Atman & Paramatman. It is like waking up from a dream. Because after getting Mukti a human being knows that everything we experience in this world is like a dream & it is not my true self. I am different from what I’am now in this world. The person who is mukt, is called the â€Å"Enlightened One† (Atamashakshatkari). That means He knows this world as a play or a dream. He fully knows that this sharir / deh is not me, I am Atman.Like a dream nobody can do anything to me because nobody knows me, who I am. Dream is an illusion. In our dream anything can happen anywhere & we are present everywhere,w e know everything, we are sakshi of every moment in the dream, because it is our dream. Likewise in this world also what we experience is our own experience. Experience of two person’s are not same. Each & every person think differently. Pinde Pinde matibhirna | Each person has got different mate. It is a long process for a pind to achieve mukti As our saints say 84 lacs of births the pind has to undergo if he doesn’t try for mukti.That is why we have to try for mukti in this very birth. Because nardeh only can try for mukti. SIMPLE MEANING OF MUKTI When we are awake from a dream we understand that we were watching a dream in our sleep. And nothing has happened as seen in the dream. It was my illusion. In the dream, I was thinking as a real. I was experiencing all that but now I’m awake from that illusion & now I can understand that I am different from what I was in my dream that’s why whatever I had experienced in the dream was everything false & I understand now that nothing happened to me.In the same way what we experience here in this world is not happening t o me because I am very different from what I’m experiencing here as myself. This body my name, my family, my status, my education, my colour, my looks, my habits, my home†¦.. all these things are not mine. I am very different from all these things. I am Atman which is bound in this deh. Atman has to try to come out or to be free from this deh without any harm to this body that is called mukti. This is an exact meaning of mukti. When the Atman comes out of this deh without any damage to it, it is mukt from this world.He can have the knowledge of all Brahmand that means he can have gyan of everything like divine. He will be totally blissful, all pervading, omnipotent. All the God’s adjectives can be put before his name. Atmagyani saints are all mukt, as they have seen their own Atman out of their body in this birth. If man / human being has got this capacity to see the Atman out of the body & be free from all bondages then why not try for the same, in this very birt h? STEP FOR ATTAINING MUKTI (THESIS) EASIEST WAY FOR ATTAINING MUKTIHa janm aahe mukti milavnyacha Ha janm aahe bhakti karnyacha Ha janm naahi punha†¦Ã¢â‚¬ ¦ Bhakti is the easiest way towards mukti. The person who does bhakti is pure minded. Mind has the power or potential to pure itself when it comes into contact with God. When mind comes into contact with God, with feelings, it is out of the effect of time & space. Time & space doesn’t affect the mind & body each time when it comes in contact with God with love. See the persons who love God, look younger than others. His mind also is truly pure.

Saturday, January 11, 2020

Biodegradable Plastics Contribution To Global Methane Production Environmental Sciences Essay

Industry of biodegradable Plastics is a freshly emerged sector, which originated to plan degradable plastics by common biological beings such as, bacteriums, algae and Fungi. Invention of bioplastics specifically resulted to suppress the monopoly of petrochemical plastics in the market since ; petrochemical plastics have become a onerous issue due to economic emphasis, environmental impacts and resource deficit caused by use of non-renewable crude oil oil. Since biodegradable plastics are designed to degrade in the biological environments, the most common and executable method of terminal of life scenario is landfills. Objective of the present survey is to gauge maximal extra methane coevals via biodegradable plastics under landfill anaerobiotic conditions. Literature was reviewed on presently available types of biodegradable plastics, single polymers comprised, production capacity ( twelvemonth 2007 ) and methane production informations from single polymers. Empirical information fo r methane coevals were based on the published experimental literature on single polymers under research lab simulated landfill conditions utilizing thermophilic anaerobiotic sludge digestion. Methane coevals in organic molecules was theoretically calculated based on derived presently available chemical equations, presuming standard temperature and force per unit area conditions. Global methane part by biodegradable plastics was calculated merely utilizing theoretical values since no sufficient informations were available at experimental conditions. Study demonstrates 0.011 % of planetary part of methane by biodegradable plastics if full production capacity in twelvemonth 2007 is assumed to be landfilled and wholly biodegraded. 1.52 % of methane is contributed to planetary emanations, if 90 % of petrochemical plastics are substituted by biodegradable plastics, which the per centum of petrochemical plastics could be technically substituted harmonizing to the studies of PROBIP ( 2009 ) . In comparing of theoretical and experimental informations, experimental information was in the scope of 55.9- 68.84 % upon theoretical informations. The estimated values demonstrate a low degree of methane emanation compared with other anthropogenetic methane beginnings, showing a negligible impact to planetary methane emanation and/or planetary heating by biodegradable plastics. Introduction Plastics are man-made, typically long concatenation polymeric molecules. Substitution of natural stuffs by plastics came about to the scenario back in 1907 after innovation of man-made polymer â€Å" Bakelite † from phenol and methanal ( Thompson et al. , 2009 ) . Improvement of the synthesis methods and techniques have ameliorated the quality of plastics with more stable and lasting belongingss ( Shah et al. , 2008 ) . Today plastics have become an indispensable portion of the worlds ‘ life peculiarly due to their extended usage in packaging, cosmetics, chemicals, and detergents. Plastics we use today are synthesized stuffs extracted from rough oil, coal and natural gas ( Seymour, 1989 ) which is termed as Petroleum based plastics. Property of high doggedness ( really slow biodegradation rate ) of plastics have created being immune to environmental degradability which mounted social consciousness and concerns of proper disposal and direction ( Albertsson et al. , 1987 ) . Wide assortment of plastics are manufactured including polypropene, polystyrene, polyvinyl chloride, polythene, polyurethane and rayonss with estimated planetary production of about 140million dozenss per twelvemonth ( Shimao 2001 ) . Therefore inordinate utilizations of plastics have exerted a immense force per unit area globally in footings of salvaging of confined petroleum oil, waste disposal and direction, and environmental diversion. To get the better of the jobs related to petroleum based plastics attending of scientists have devoted their attending that lead to advance research activities to give rise to alternate stuffs, intended to degrade through biological procedures ( Shah et al. , 2008, Lenz and Marchessault, 2004, Amass et al. , 2001 ) . A new type of thermoplastic polyester was foremost produced by Imperial Chemical Industries Ltd- London in 1982, which was considered to be wholly biodegradable ( Anderson and Dawes, 1990 ) . The invented merchandise is known as biodegradable plastic since, it ‘s degraded by environmentally available micro-organisms. Term Bioplastic ( BP ) is perplexingly used today to construe bio-based and bio-degradable stuffs. However the survey will chiefly see on the Biodegradable plastics ( BDP ) , which is intended to utilize as a promising solution for the crude oil based plastics. Harmonizing to ASTM definition of BP, BP is a degradable plastic in which the debasement con sequences from the action of naturally-occurring micro-organisms such as bacteriums, Fungis, and algae ( Narayan, 1999 ) . Many different types of BPs have been successfully produced and have invaded the market during past few old ages. BPs are synthesized utilizing works extracted polymers or usage of growing of micro-organisms. Tailoring the belongingss of works extracted polymers via chemical alteration of the chief polymer by hydrolysable or oxidisable groups and utilizing polymer blends ( Amass et al. , 1998 ) have amended BP to utilize in a wide scope of applications contained with novel and good features. The primary end expected over innovation of BPs was the environmental concerns including waste direction, decrease of nursery gas release, and salvaging of non-renewable energy ( petroleum oil and gas ) . Apart from that secondarily, economic facets and new proficient chances came into scenario ( PROBIP, 2009 ) . Today BPs are popular compounds used in packaging stuffs, wetting agents, as biomedical stuffs ( eg: lesion dressings, drug bringing, Surgical implants ) , and agricultural compounds ( eg: command the fertiliser and pesticide release ) . BPs used as packaging stuffs has led to first-class direction scheme chiefly to forestall environmental accretion ( Amass et al. , 1998 ) . Merely 0.3 % ( 0.36 million metric dozenss ) of the world-wide production of conventional plastics has replaced by biodegradable plastics by the twelvemonth of 2007. In twelvemonth 2007 universe plastic coevals was reported as 205 million dozenss ( Gervet and Nordell. , 2007 ) . However 90 % of the conventional plastics are estimated the per centum is capable of technically substituted by BPs. There is an rush in coevals of bio based plastics globally that resulted in an estimated planetary growing of 38 % from 2003 to 2007 ( PROBIP, 2009 ) . Initially when BPs were come ining to the market ( 1990 ) no standard processs were existed to look into the biodegradability of the plastics. To forestall misconceptions with biodegradability of BPs, criterions have been developed by standard organisations to place the actual biodrgradability of BPs in trade good ( Mohee et al. , 2007 ) . At the terminal of the service life BPs wind up in landfills, anaerobiotic intervention workss or composting installations. Based on the degradable belongingss and the belongingss of the material terminal of life, the options vary. Landfill disposed BPs will finally undergo anaerobiotic biodegradation where, the stuffs are disintegrated to methane, C dioxide, H sulfide, ammonium hydroxide, H and H2O as a consequence of series of microbic metabolic interactions ( ATSDR, 2010 ) . Methane gas is a well-known and of import by merchandise which public attending has paid as a planetary heating gas and besides as an economically feasible biofuel. The surv ey is a preliminary effort to look into the degrees of extra methane gas released if terminal of life option is chosen to be a landfill utilizing normally available types of BPs globally, with different biodegradability degrees.Back landTypes of BPs Literature studies legion types of BPs in the market today, such as amylum plastics, Poly glycolic acid ( PGA ) , Poly lactic acid ( PLS ) , poly lactic acid-co-glycolic acid, poly 3- hydroxybutanoate ( P3HB ) , Poly 3- hydroxyl valerate ( PHV ) , Polyethylene succinate ( PES ) , Poly butylenes succinate, Poly propiolactone ( PPL ) , starch blends, etc ( Figure 1 ) ( Shah et al. , 2008, PROBIP, 2009 ) , derived from renewable resources such as amylum, works based oils, or cellulose ( Beta analytic, 2010 ) . The survey covers 5 major groups of BDPs presently available in the market with inside informations on different makers engaged in fabricating procedure ( Table 1 ) . Except these chief groups mentioned, chitin ( polyose ) , protein ( collagen, casein ) , and amino acid based BDPs are manufactured in undistinguished degrees, which are non covered in this survey. Main group of polymer contributes the planetary BP production is Cellulose plastics, which the production capacity is ab out 4000Mt per annum. To be considered as a bioplastic, it should be certified lawfully through criterions, EN 13432 or EN 14995 in Europe, ASTM D-6400, ASTM D6868, ASTM D6954, ASTM D7081 in United States, DIN V4900 in Germany or ISO 17088 in other states ( Beta analytic, 2010, ASTM, 2010 ) . As mentioned earlier all BPs are non biodegradable and the biodegradability is based basically on the molecular construction of the compound. ASTM D-6400 requires 60-90 % decomposition of BPs within 180 yearss in natural environment in order to be considered as a biodegradable plastic. ASTM has demonstrated both aerophilic and anaerobiotic criterion methods to place ( severally in composting environments and anaerobiotic digestion procedures ) the extent of biodegradability of BDPs ( Narayan, 1999 ) . Decomposition Degradation and possible degradability of a peculiar BDP varies depending on the environment exists: anaerobic or aerobic ( Ishigaki et al. , 2004 ) . Based on the debasement belongings of a peculiar BDP, terminal of life option should be chosen, whether it is to be disposed in a landfill or composting installation. Different types of dirt micro-organisms ( bacteriums and Fungis ) are responsible for the biodegradation of different types of BPs specifically ( Shah et al. , 2008 ) . Rate and procedure of biodegradation of BPs rely on the Soil belongingss, nature of the pretreatment, features of the polymer such as tactual sensation, mobility, molecular weight, functional groups present, additives, handiness and optimum growing of specific micro-organisms ( Artham and Doble, 2008, Glass and Swift, 1989, Gu et al. , 2000 ) . Initially biodegradation starts with decomposition of the polymer via physical and biological forces. Some fungous hyphae are able to perforate the polymer construc tion and cause clefts and swelling of the stuff ( Griffin, 1980 ) . Heating, chilling, stop deading melt, wetting and drying like physical forces besides contribute the mechanical debasement procedure ( Kamal and Huang, 1992 ) . By and large high molecular weighted polymers have a lesser possible to biodegrade than the low molecular weighted compounds. Broadly extracellular and intracellular microbic enzymes are responsible for biodegradation procedure, and so converted into oligomers, dimers and monomers which can be easy penetrable into bacterial cells. Therefore utilizes for bacterial energy production let go ofing CO2, CH4, and H2O ( Hamilton et al. , 1995, Gu et al. , 200 ) . Present survey will be given accent landfills, as the terminal of life clip option. Less information is available on the biodegradation of BDP in landfill anaerobiotic conditions than aerophilic composting. Thence more probes have to be implemented and few have been reported ( Yagi et al. , 2009 ) . In a l andfill high per centum is readily degraded by anaerobiotic communities in anoxic conditions. As a consequence of series of physical, chemical, cubic decimeter and biological reactions that take topographic point in a landfill, landfill gas is produced, with changing composings based on the type of waste contained ( Barlaz et al. , 1990 ) . Anaerobic debasement of C, Hydrogen and Oxygen incorporating substance is given by the Buswell equation as follows ( Yagi et al. , 2009 ) . CnHaOb + ( n- a/4 – b/2 ) H2O ( n/2 + a/8 – b/4 ) CH4 + ( n/2 – a/8 + b/4 ) CO2 ( A ) Anaerobic decomposition of Carbon, Hydrogen, Oxygen and Nitrogen incorporating substance is given as follows ( Behera et al. , 2010 ) . CaHbOcNd + ( ( 4a-b-2c+3d ) /4 ) H2O ( ( 4a+b-2c-3d ) /8 ) CH4 + ( ( 4a-b+2c+3d ) /8 ) CO2 + vitamin D NH3 ( B ) CO2 and CH4 are the chief gaseous substances released during anaerobiotic debasement of any compound. Methane produced in landfills is recovered as an energy beginning where provides an economic advantage. However if non recovered, methane would readily come in to the ambiance, which is listed as one of the major subscriber to planetary heating. Methane is an effectual heat pin downing agent in the ambiance and over 20 times more powerful than CO2 ( USEPA, 2010 a ) . Surveies have reported on methane outputs obtained via anaerobiotic biodegradation for few polymers ( Cellulose ester, Polycaprolactone and Poly lactic acid ) and most are yet to be studied.Methane as a potent planetary heating gasGlobal heating is understood as the chief causing of planetary clime alteration. Global heating is caused due to increase of green house gases in the ambiance such as Carbon dioxide, methane, Nitrous oxide, and H2O vapour ( US composting council, 2009 ) . Methane is considered as a green house gas with high heat pin downing capacity which lasts about 9- 15 old ages in the ambiance. Global warming possible ( GWP ) of green house gases are represented in relation to a mention gas, CO2, where GWP is considered as 1. Global warming potency of methane gas is 21 which infers, 21 times more effectual heat pin downing agent than CO2. Methane is emitted to the ambiance chiefly from anthropogenetic and natural beginnings. 50 % of methane in the ambiance is attributed to anthropogenetic beginnings such as fossil fuel burning, biomass combustion, rice cultivation, carnal farming, and waste direction. Contribution of anthropogenetic methane to planetary green house gas emanation was 282.6 million dozenss in the twelvemonth 2000 ( 22.9 % ) as declared by USEPA ( 2006 ) . Natural beginnings of methane emanations include emanations from wetlands, permafrost, white ants, oceans wild fires and fresh H2O organic structures. Degrees of methane emitted from each part or state depends on facto rs, such as climatic conditions, industrial and agricultural lands, energy type used and godforsaken direction processs. Largest methane emanation homo related beginnings in USA are landfills, carnal farming, and manure direction where the 2nd highest of the list goes to landfills. In the facet of planetary methane production, landfills attributed the 3rd highest beginning of emanation and globally methane part by landfills was over 12 % for twelvemonth 2000 ( USEPA, 2010 B ) . Organic compounds in a landfill, upon decomposition release methane as mentioned above and recent appraisal suggests that 72 % of MSW watercourse contained with organic substances: paper, nutrient garbages, yard dust, textiles/ leather, and wood. Percentages of each MSW constituent landfilled was severally, 34 % , 12 % , 13 % , 7 % , and 6 % ( US composting council. , 2009 ) . Thus methane coevals from each MSW constituent may be assumed being in the same order as above from each MSW constituent, since methan e production is relative to the C sum in an organic substance. Thus paper is the chief methane gas subscriber to the ambiance from a landfill while others play a minor function. BDPs is fresh emerging organic compound set in the landfills and besides a new planetary beginning of methane breathing from a landfill.Gas Generation theoretical accountLandfill gas appraisal is utile for landfill operators, regulators, energy users and energy recovery undertaking proprietors to look into how gas is produced and recovered in a peculiar clip period. USEPA has generated a Landfill methane gas appraisal theoretical account to imitate the gas production in landfills utilizing first order decay curve, which is written as, M ( T ) = M0 vitamin E -kt. Where M ( T ) is the mass of a batch waste staying at any clip, M0 is the initial mass of waste, K is the decay rate ( clip -1 ) and T is the clip since decay was begun. Gas production is straight correlated to mass doomed, which is termed as L0 ( M3 of methane per metric ton of waste ) . Entire Volume of gas ( G0 ) that can be produced by the debasement of mass of weight ( M0 ) is, calculated utilizing the equation, G0 = L0 M0. BDP is a freshly emerging landfill constituent which contributes the planetary methane coevals. The survey will supply an appraisal of extra methane produced upon this new reaching.MethodsStudy was based on appraisal of extra methane gas sum produced from landfills with subsequent outgrowth of BDPs to the market. Literature was reviewed related to trade name names, measure, polymer types incorporated and biodegradability ( particularly in footings of methane production ) of BDPs normally found in the planetary market ( Table1 and Table 2 ) . Manufacturer and measure informations obtained were associated with the twelvemonth 2007. This survey has considered merely biobased and non biobased BDPs and not degradable bio based or non biobased plastics have non been used for analysis as they are incapable of degrade in a landfill and release methane. Study was carried out in 4 stairss. Measure 1: Methane production per twenty-four hours was calculated utilizing published experimental informations on methane gas production in fake landfill conditions presuming entire manufactured BDPs were being landfilled ( Table 2 ) . Biodegradability of a peculiar BDP is likely to change based on the per centums of single polymers contained in the blend. Although production capacity was available in regard to a peculiar trade name name, no production informations was available for single polymers individually. Since a peculiar manufacturer industries different types of BDP stuffs related to fabric, agribusiness, biomedical points and packaging, per centums of single polymers used for blends vary mostly from each other even within the same trade name name. Therefore it ‘s hard to nail a distinguishable per centum for each polymer in a peculiar BDP being manufactured. Further information on per centums of each polymer are neither readily available from the makers ‘ web sites nor descriptive surveies have done sing per centums. Therefore trade name names with multiple polymer types were assumed to be every bit distributed, therefore manufactured capacity from each polymer was obtained by averaging the manufactured capacity of the peculiar trade name name. Most published literature was based on the biodegradability of single polymer types instead than the biodegradability of a peculiar trade name name except for Mater Bi amylum BDP ( Mohee et al. , 2007 ) . Measure 2: Methane production per twenty-four hours was calculated utilizing theoretical stoichiometric methane production informations presuming entire biodegradation of the compound and entire manufactured BDPs ( 2007 ) were being landfilled. Trade names with multiple Numberss of polymers, per centums of single polymers are assumed every bit distributed as mentioned in step1 ( Table 3 ) . Methane gas sum released is theoretically calculated utilizing the chemical equations ( A ) and ( B ) . Maximum biogas ( CO2, CH4 and NH3 ) sum produced by debasement of 1 kgs ton of Poly lactic acid ( ( C2H4O2 ) N ) was calculated to be 7.5 ten 10 5 M3 ( ( 106/60 ) x 22.4x 2 ) at standard temperature and force per unit area. CH4: CO2 ratio for poly lactic acid is 1:1. Theoretical maximal volume of CH4 produced calculated harmonizing to the combined gas jurisprudence was reported to be 3.73 ten 10 5m3, presuming entire biodegradation of the compound. Table 3 displays the maximal theoretical methan e volume produced at standard temperature and force per unit area for C, H, O and N related polymers intended to discourse in this survey. Measure 3: Maximal methane production was calculated sing the sum of BDPs being landfilled per twelvemonth when 90 % ( the possible sum that can be technically substituted by BPs from petrochemical plastics in usage today ) of petrochemical plastics were substituted over BPs. All BDPs produced are assumed to be readily ( during a period of twelvemonth ) biodegradable in this scenario. Measure 4: Contribution of landfilled BDPs to planetary methane emanation was calculated utilizing the entire methane emanation informations obtained from measure 3 and step 4.RESULTS AND DISCUSSIONDatas on methane coevals ( Table 2, step 1 ) was obtained from published experiments on anaerobiotic decomposition of single polymer compounds, imitating landfill, thermophilic conditions by utilizing anaerobiotic sludge as the medium in controlled research lab conditions. However, since different writers have used different conditions with different types of sludges and diversed microbic communities, ( affects diverseness of microbic communities ) ( Abou-Zeid et al. , 2004 ) would impact the dependability of the survey in using the values for comparing, due to debut of many prejudices. It was non possible to gauge planetary methane production based on published experimental informations since sufficient informations were non available to cover a sensible figure of polymers attended this s urvey. However, appraisal for planetary methane production from BDPs was able to obtained by utilizing theoretical computation to near the aims as showed in measure 2, Table 3 ( see appendix for computations ) . If assumed the full manufactured BDPs in twelvemonth 2007 were landfilled and entire landfilled is wholly biodegraded, the methane sum produced was calculated to be 8.31 ten 10 8m3. Global part resulted was 0.011 % in this scenario ( see appendix ) . MSW watercourse is declared to be composed of 205 million dozenss of petrochemical plastics in twelvemonth 2003 ( Garnet and Nordell, 2007 ) . The sum of BDPs that could perchance replace to petrochemical plastics was calculated to be 184.5 million dozenss. Assuming equal proportions of different BDPs tabulated in Table 2 are being landfilled, the sum of methane released is calculated to be 1.06 ten 1011m3 / twelvemonth. 90 % permutation scenario is an appraisal undertaken to understand whether methane released causes important part to planetary anthropogenetic methane gas emanation, in its maximal degree of BDP industry. The scenario is responsible for 1.38 % of planetary methane part. This was 116 % of entire landfill methane coevals based on the twelvemonth 2006 sum methane emanation ( USEPA, 2006 ) , which is higher than the entire current landfill methane coevals. The values were obtained on the footing of 2007 BDP industry informations nevertheless expected entire plastic production will besides be raised seemingly at the clip of 90 % permutation petrochemical plastics upon BDPs. Entire BP production capacity amounted to be in twelvemonth 2020 is 1.5-4.4 million dozenss ( PROBIP 2009 ) . In comparing of the methane outputs ( m3/kt ) from theoretical stoichiometric computations and research lab measurings ( Table 4 ) , extremely vary. It is obvious that, experimental methane production in laboratory conditions is lower than the theoretical information. Percentage of experimental methane emanation was in the scope of 55.9-68.84 % of the theoretical values, when compared the methane emanation degrees of available experimental informations ( PCL and PCL ) . Methane sums will be farther diminished if methane emanation is calculated sing the experimental information. Efficiency of biodegradation procedure occur in a landfill governs the rate and sum of methane generated into the ambiance. Numerous factors such as size of waste atom, composing of waste, pH, temperature, design of the landfill, foods and as the most of import factor wet control the methane emanation in a landfil ( Micales and Skog, 1996, Augenstein and Pacey, 1991 ) . Rathje and Murphy ( 1992 ) have demonstr ated mummification of garbage under degrees where, a landfill does non have optimal degree of wet hindering debasement or methane release ( Barlaz et al. , 1987 ) . Bogner and Spokas ( 1993 ) have shown that C transition value of 25-40 % for even readily degradable stuffs in a landfill and Aragno ( 1988 ) reported 35-40 % organic affair debasement to Carbon dioxide and methane under ideal laboratory conditions. However in the present survey Methane coevals resulted was higher than the published literature, showing higher methane emanations from BDPs than other beginnings such as wood, paper, etc. Therefore under existent landfill conditions released methane sums is lesser than the controlled research lab obtained values as confirms by published informations and informations from the present survey. Further debasement procedure in a landfill takes topographic point over decennaries of periods and even after 20-30 old ages of period big measures of non-degraded parts have been observe d even for readily degradable stuffs ( Micales and Skog, 1996 ) . Therefore methane outputs per twelvemonth should be more lessen than the quoted values in the survey. Efficient and effectual usage of landfill methane as a good fuel or enrgt beginning would farther relieve the methane release into the ambiance in landfills ( Gregg, 2010 ) .SUMMARY AND CONCLUSIONSThe survey estimates maximal extra planetary theoretical methane resulted from decomposition of BDPs which is a fresh methane beginning emerged from landfills. Result suggest that the planetary part of BDPs to methane coevals is relatively less compared with other anthropogenetic beginnings. However in comparing of the methane emanation from BDPs, with other landfill constituents, BDPs are likely to lend a considerable sum of methane, which demonstrated the highest sum of methane emanation other landfill constituents. Experimental information groundss an overestimate of the theoretical estimations. Study has come across with many premises in each word picture scenario, which weakens the appraisal. However survey provides an appraisal of the extra methane gas released globally due to BDP landfilling, where no surveies or appraisals have done so far in a maximal possible logical and scientific manner using available informations. Further surveies on single polymer debasement are indispensable in order to beef up and verify the consequences obtained for sound actual appraisals.MentionsATSDR ( Agency for Toxic substances & A ; Disease Registry ) . 2010. hypertext transfer protocol: //www.atsdr.cdc.gov/hac/landfill/html/ch2.html. Accessed July 2010. Albertsson, A. C. , Andersson, S. O. , Karlsson, S. 1987. The mechanism of biodegradation of polythene. Polym Degrad Stab 18,73-87. Amass, W. , Amass, A. , Tighe, B. 1998. A reappraisal of biodegradable polymers: Used, Current Developments in the synthesis and word picture of biodegradable polyesters, blends of biodegradable polymers and Recent progresss in biodegradation surveies. Polymer international. 47, 89-144. Anderson. A. J. , Dawes, E. A. 1990. Happening, metamorphosis, metabolic function and industrial utilizations of bacterial polyhydroxyalkaonates. Microbiol Rev. 54:4, 450-472. Aragno, M. 1988. The landfill ecosystem: a microbiologists look inside a â€Å" black box † . In the Landfill. Lecture notes in Earth Sciences # 20, erectile dysfunction. P. Baccini. Springer Verlag. New York. 15-38. In: Micales, J. A. , Skog, K. E. 1996. The decomposition of Foresy merchandises in landfills. International Biodeterioration & A ; Biodegradation 39. 2-3. 145-158 Artham, T. , Doble, M. Biodegradation of Aliphatic and Aromatic Polycarbonates. Macromol Biosci 2008 ; 8 ( 1 ) :14-24. ASTM Standards and Engineering Digital library. 2010. ASTM international. hypertext transfer protocol: //www.astm.org/DIGITAL_LIBRARY/TOPICS/PAGES/section08_stds.htmHYPERLINK â€Å" hypertext transfer protocol: //www.astm.org/DIGITAL_LIBRARY/TOPICS/PAGES/section08_stds.htm Accessed October 2010 † Accessed October 2010. Augestein, D. , Pacey, J. 1991. Landfill methane theoretical accounts, Proceedings from the Technical Sessionss of SWANA ‘s 29th Annual International Solid waste expounding, SWANA, Silver Spring, MD. 87-111. In: Micales, J. A. , Skog, K. E. 1996. The decomposition of Foresy merchandises in landfills. International Biodeterioration & A ; Biodegradation 39. 2-3. 145-158. Barlaz, M. A. , Ham, R. K. , Schaefer, D. M. 1990. Methane production from Municipal garbage: A reappraisal of sweetening techniques and microbic kineticss. Environmental Science and Technology. 19, 6. 557-584. Barlaz, M. A. , Milke, M. W. , Ham, R. K. 1987. Gas production parametric quantities in healthful landfill simulators. Waste manag. And Res. 5, 27-39. Bertoldi. M. , Sequi, P. , Lemmes, B. 1996. The Science of composting. 1st edition, Glasgow. Chapman & A ; Hall. Beta analytic Corporation. 2010. & lt ; hypertext transfer protocol: //www.betalabservices.com/biobased.html. Accessed october 2010 & gt ; . Bogner, J. , Spokas, K. 1993. Landfill CH4: rates, destinies and function in planetary C rhythm. Atmosphere. 25. 369-386. Gervet, B. , Nordell, B. 2007. The usage of rough oil in plastic devising contributes to planetary heating. Renewable energy research group, Division of Architecture and Infrastructure, Lulea University of Technology, Sweden. Glass, J. E. , Swift, G. 1989. Agricultural and Synthetic Polymers, Biodegradation and Utilization, ACS Symposium Series, 433. Washington DC: American Chemical Society. 9-64. Gregg, J. S. 2010. national and regional coevals of municipal residue biomass and the future possible enemy waste-to-energy execution. Biomass and Bioenergy. 34. 379-388. Griffin, G. J. L. 1980. Man-made polymers and the life environment. Pure Appl Chem. 52. 399-407. In: Shah, A. A. , Hasan, F. , Hameed, A. , Ahmed, S. 2007. Biological debasement of plastics: A comprehensive reappraisal. Biotechnology Advances. 26, 246-265. Gu, J. D. , Ford, T. E. , Mitton, D. B. , Mitchell, R. Microbial debasement and impairment of polymeric stuffs. 2000. In: Revie W, editor. The Uhlig Corrosion Handbook. 2nd Edition. New York: Wiley.. 439-60. In: Shah, A. A. , Hasan, F. , Hameed, A. , Ahmed, S. 2007. Biological debasement of plastics: A comprehensive reappraisal. Biotechnology Advances. 26, 246-265. Hamilton, J. D, Reinert, K. H, Hogan, J. V, 1995. Lord WV. Polymers as solid waste in municipal landfills. J Air Waste Manage Assoc. 43. 247-51. Ishigaki, T. , Sugano, W. , Nakanishi, A. , Tateda, M. , Ike, M. , Fujita, M. 2003. The degradability of biodegradable plastics in aerophilic and anaerobiotic waste landfill theoretical account reactors. Chemosphere. 54. 225-233. Kamal, M. R. , Huang, B. Natural and unreal weathering of polymers. In: HamidSH, Ami MB, Maadhan AG, editors. Handbook of Polymer Degradation. New York, NY: Marcel Dekker ; 1992. p. 127-68. Lenz, R. W. , Marchessault, R. H. 2004. Bacterial Polyesters: Biosynthesis, biodegradable plastics and biotechnology. American Chemical society. 6:1. Micales, J. A. , Skog, K. E. 1996. The decomposition of Foresy merchandises in landfills. International Biodeterioration & A ; Biodegradation 39. 2-3. 145-158. Mohee, R. , Unmar, G. D. , Mudhoo, A. , Khadoo, P. 2007. Biodegradability of biodegradable/degradable plastic stuffs under aerophilic and anerobic conditions. Waste Management. 28, 1624-1629. Narayan, R. 1999. ASTM criterions aid define and turn a new biodegradable plastics industry. ASTM standardisation News. 36-42. PROBIP ( Product overview and market projection of emerging bio-based plastics ) . 2009. Europen polysaccharide Network of excellence and European Bioplastics. Rathje, W. , Murphy, C. 1992. Rubbish: The archaeology of refuse, new York: Harper Collins.250. Seymour, R. B. Polymer scientific discipline before & A ; after 1899: noteworthy developments during the life-time of Maurtis Dekker. J Macromol Sci Chem 1989 ; 26:1023-32. Shah, A. A. , Hasan, F. , Hameed, A. , Ahmed, S. 2007. Biological debasement of plastics: A comprehensive reappraisal. Biotechnology Advances. 26, 246-265. Shimao, M. 2001. Biodegradation of plastics. Curr Opinion Biotechnol 12,242-247. Behera, S. K. , park. , J. , Kim, K. , Park, H. 2010 Methane production from waste leachate in laboratory-scale fake landfill. Waste direction. 30. 1502-1508. Thomas, N. , Clarke, J. , McLauchlin, A. , Patrick, S. 2010. Measuring the environmental Impacts of oxo-degradable plastics across their life rhythm. Loughborough University. Thompson, R.C. , Swan, A. H. , Moore, C. J. , Saal, F. S. 2009. Our Fictile Age. Phil. Trans. Soc. 364, 1973-1976. United States Composting Council. 2009. USCC Position statement: Keeping organics out of landfills. USEPA ( United States Environmental protection Agency ) . 2010a. hypertext transfer protocol: //www.epa.gov/climatechange/glossaary.html # GWP. Accessed October 2010. USEPA ( United States Environmental protection Agency ) . 2010b. hypertext transfer protocol: //www.epa.gov/methane/ . Accessed October 2010. USEPA ( United States Environmental protection Agency ) . 2008. Municipal Solid wastrel coevals, Recycling and Disposal in the United States: Facts and Figures. USEPA ( United States Environmental protection Agency ) . 2006. Global Extenuation of Non-CO2 Green house gases. Office of Atmospheric plans, Washington, DC. EPA 430-R-06-005. Yagi, H. , Ninomiya, F. , Funabashi, M. , Kunioka, M. 2009. Anaerobic biodegradation trials of polylactic acid and polycaprolactones utilizing new rating system for methane agitation in anaerobiotic sludge. Polymer Degradation and Stability. 94. 1397- 1404.List of TablesTable 1 Manufacturers and sums of BDP manufactured in twelvemonth 2007 Table 2 Literature published on methane production, biodegradability of polymers incorporated to BDPs and calculated methane production degrees Table 3 Maximum theoretical methane sums released during anaerobiotic biodegrdation of major polymer types in standard temperature and force per unit area Table 4 Comparison of theoretical and experimental methane emanation degreesList of FiguresFigure 1 Molecular constructions of polymers involved in the production of common BDPsTable 1 Manufacturers and sums of BDP manufactured in twelvemonth 2007.ManufacturerState of productionTrade NamePolymer typePolymer NameWorldwide production ( kt.p.a. ) in 2007BiodegradabilityA Cellulose Plastics ( with regerated cellulose and cellulose esters )AAAA2046A1 Lenzing GLO Lenzing viscose Lenzing modal Tencel Viscose modal and encel fibres Cellulose ester ( CA ) Cellulose acetate propionate ( CAP ) Cellulose ethanoate butyrate ( CAB 590 Fully biodegradable 2 Birla India, Thailand, Indonesia Birla Cellulose Viscose modal and encel fibres Cellulose acetate Cellulose ethanoate propionate Cellulose ethanoate butyrate 500 Fully biodegradable 3 Formosa Chemicals & A ; Fibre Taiwan Sodium Viscose Staple fibers Cellulose xanthate 140 Fully biodegradable 4 Kelheim Germany Danufil, Galaxy, Viloft Viscose Staple fibers Cellulose ester Cellulose ethanoate propionate Cellulose ethanoate butyrate 72 Fully biodegradable 5 Celanese United states Sodium CA flakes, tows and fibril Cellulose ester ( Cellulose ethanoate ) 250 Sodium 6 Eastman United states Sodium CA tows and fibril, CAB, CAP Cellulose ester Cellulose ethanoate propionate Cellulose ethanoate butyrate 200 Sodium 7 Rhodia Acetow Germany Sodium CA tows Cellulose ester ( Cellulose ethanoate ) 130 Sodium 8 Daicel Japan Sodium CA tows Cellulose ester ( Cellulose ethanoate ) 90 SodiumAOtherAA74ManufacturerState of productionTrade NamePolymer typePolymer NameWorldwide production ( kt.p.a. ) in 2007BiodegradabilityBacillus Polylactic Acid ( PLA ) polymers 151A9 PURAC Taiwan PURACAPolylactic acid ( PLA ) 75 Fully biodegradable 10 Nature Works United states IngeoAPolylactic Acid 70 Fully biodegradableAOther 6AC Starch blends 153A11 Novamont Italy Mater Bi Starch blends Starch/ Polycaprolactone ( PCL ) * 40 Fully biodegradable 12 Rodenburg Newzealand Solanyl Fermented amylumA40 Fully biodegradable 13 Biotec Danmark Bioplast amylum blendsA20 Fully biodegradableAOther 53ACalciferol Polyhydroxy alkanoates 2A14 Tianan Canada Enmat PHBV, PHBV and Ecoflex ( petrochemical polymer ) poly ( 3-hydroxybutyrate-co-3-hydroxyvalerate ) ( PHBV ) 2 Fully biodegradable Tocopherol Polyurethane from Biobased polyol 12.3A15 Dow United states Renuva Polyurethane 8.8 Fully biodegradableAOther 3.5AManufacturerState of productionTrade NamePolymer typePolymer NameWorldwide production ( kt.p.a. ) in 2007BiodegradabilityAF Other biodegradable polymers 140A16 DuPont Japan Biomax PBST/PET copolymer Poly ( butylene succinate terephthalate ) Poly ( ethylene terephthalate ) ( PET ) 90 Sodium 17 Novamont Japan EatBio Polytetramethylene adipate- co- terephthalate ( PTMAT ) 15 Fully biodegradable 18 BASF Danmark Ecoflex Poly butylene adipate-co-butylene terephthalate ( PBAT ) 14 Fully biodegradableAOther 21AData Beginning: ( PROBIP, 2009 ) , NA-Data Not Available * Data beginning: Bertoldi et al. , 1996.Table 2 Literature published on methane production, biodegradability of polymers incorporated to BDPs and calculated methane production degrees..PolymerInitial mass ( g )Methane volume ( L )Dayss of incubationMethane production ( % )BiodegradaBility ( % )Methane volume ( m3/ karat ) / L0*Global polymer production ( kt/annum ) M0Volume of methane gas ( G0 ) ( m3/day ) **MentionsPolylactic acid 10 2.57 22 53.8 91 257,000 151 3.9 x 107 Yagi et al. , 2009 Mater Bi ( Starch Blend ) 1.96 0.245 32 99.11 26.9 24,500 40 9.8 x 106 Mohee et al. , 2007 Polycaprolactone 10 6.59 22 65.8 92 659,000 20 1.3 ten 10 7 Yagi et al. , 2009 * Calculated methane volume ( m3/kton ) based on published informations. ** Calculated methane sums harmonizing to the USEPA gas appraisal theoretical account.Table 3 Maximum theoretical methane sums released during anaerobiotic biodegrdation of major polymer types in standard temperature and force per unit area conditions.Major polymer typePolymerProduction capacity ( kt/annum )Theoretical methane production ( m3/kt )Theoretical methane production ( m3/yr )Cellulose based Cellulose ethanoate 668.76 6.2 ten 10 5 4.1 ten 10 8 Cellulose ethanoate butyrate 448.76 4.0 ten 10 5 1.8 ten 10 8 Starch blends ( Mater Bi ) Starch 20 4.1 ten 10 5 8.3 ten 10 7 Polycaprolactone 20 7.36 ten 10 5 1.5 ten 10 7 Poly lactic acid Poly lactic acid 151 3.73 ten 10 5 5.6 ten 10 7 Polyhydroxy alkaonates poly ( 3-hydroxybutyrate-co-3-hydroxyvalerate ) 20 1.1 ten 10 6 2.2 ten 10 7 Polyurethane based polyol Polyurethane 8.8 5.5 ten 10 5 1.3 ten 10 4 Other Polyethylene terephthalate 45 6.5 ten 10 5 2.9 ten 10 7 Polytetramethylene adipate -co- terephthalate 15 1.47 x10 6 2.2 ten 10 7 Polybutylene adipate -co-butylene terephthalate 14 7.0 ten 10 5 9.8 x10 6 Entire theoretical Methane production due to C, H, O polymers in twelvemonth 2007 if assumed all manufactured polymers being landfilled 1411.32 7.0 ten 10 7 8.31 ten 10 8 Theoretical sum methane coevals per twelvemonth is estimated to be 8.4 x10 8m3 based on twelvemonth 2007 manufactured BDP capacity.Table 4 Comparison of theoretical and experimental methane emanation degrees.PolymerExperimental Methane volume ( m3/ karat )Theoretical methane sum ( m3/ karat )% experimental emanation in relation to theoretical emanationPolylactic acid 257,000 373,333.33 68.84 Polycaprolactone 659,000 1,178,947.37 55.9Figure 1 Molecular constructions of polymers involved in the production of common BDPs

Friday, January 3, 2020

Chinua Achebe s Things Fall Apart - 1314 Words

Chinua Achebe masterpiece â€Å"Things Fall Apart† (1959) is the classic story of Okonkwo, a young man who strives to be revered by his village and family but because of his own internal character flaws meets his own demise. In the Igbo culture, family traditions are an important narrative throughout the novel. Okonkwo, the protagonist character of this story, begins with many attributes of what would be concluded as a hero with his cultural society. He is hard working, a material provider, feared and yet respected by his fellow tribesman. Yet, when dissecting the character more closely, you will in fact see that Okonkwo is not the criterion of a hero and eventually becomes an outcast within his tribe. By understanding the father-son†¦show more content†¦The author illustrates a clear picture of a man more concerned with playing his flute and drinking plum wine. A father who ignored his patriarchal duties and instead was deeply in debt and unable to care for his wife and children. In a cultural society where a son was to inherit a barn, a title, a wife and crop; the author describes a much different life for Okonkwo (Achebe, 1959). In addition, based on the religious culture of the Igbo tribe, Unoka was considered to have bad chi, an ill-fated death of evil fortune and a dishonorable burial. Thus, Okonkwo hated his father for these attributes and swore to be the opposite of him. Achebe articulates this fear by saying, â€Å"He was possessed by the fear of his father’s contemptible life and shameful death† (Achebe, 1959, p. 18). In the Igbo society, it was important that a man portray very masculine qualities. So much so, that throughout the story of Okonkwo, Achebe emphasizes the heroic accomplishments of Okonkwo and the traditional cultural values in which he lives by. In the spiritual system of the Igbo people is the concept of â€Å"chi†. Similar to ones â€Å"Ora†, it is believed that everyone and everything has chi; a fundamental force of creation (John, 2016). Okonkwo believed that a man’s chi coincided with a man saying yes to greatness (Beckman, 2002). Okonkwo possessed what he believed to be good chi, he possessed all the qualities of hero. The narrator describes Okonkwo as a tall man with aShow MoreRelatedChinua Achebe s Things Fall Apart1719 Words   |  7 PagesThings fall apart is a classic novel written around the turn of the century, the novel focuses on the protagonist who we can also call a hero, Okonkwo. Okonkwo is a wealthy and respected leader within the Igbo tribe of Umuofia in eastern Nigeria. Strong individual with a passionate belief in all the values and traditions of his people. Chinua Achebe presents Okonkwo as a particular kind of tragic protagonist, a great man who carries the fate of his people. Okonkwo is a man who is inflexible andRead MoreChinua Achebe s Things Fall Apart1033 Words   |  5 PagesIntroduction Chinua Achebe is a famous Nigerian novelist in worldwide. Things fall apart is Chinua Achebe’s first novel published in 1958, the year after Ghana became the first African nation to gain independence. And this novel is one of the first African novels to gain worldwide recognition. (Phil Mongredien, 2010) This novel presents people a story of an African Igbo tribal hero, Okonkwo, from his growth to death. The fate of Okonkwo also indicates the fate of Africa caused by the colonizationRead MoreChinua Achebe s Things Fall Apart883 Words   |  4 Pagesdehumanize the native population and convince themselves that they are helping. Chinua Achebe’s book Things Fall Apart attempts to correct these misguided views of African societies by portraying a more complex culture that values peace, and the art of conversation. Achebe also tries to portray the idea that not all European people they come in contact with are aggressive, and misconstrued in their view of the African societ ies. Achebe tries to show us the value of his society through repeated views into conversationsRead MoreChinua Achebe s Things Fall Apart1410 Words   |  6 PagesTeddy Manfre Ms. Blass ENG 209-001 April 24, 2017 Things Fall Apart In 1958, Chinua Achebe a famous Nigerian author publishes one of his most famous novels Things Fall Apart. The novel takes place in a Nigerian village called Umuofia. During the time that this novel is published Nigeria is being criticized by the Europeans for being uncivilized. In response, Achebe uses his brilliance in this novel to express the valued history of his people to his audience. His focus in the novel is on the pre-colonizedRead MoreChinua Achebe s Things Fall Apart1015 Words   |  5 PagesIn his novel Things Fall Apart, author Chinua Achebe utilizes his distinctive writing style in order to accurately capture the culture and customs of the Igbo people despite writing his story in a foreign language. Five aspects of Achebe’s style that make his writing unique is the straightforward diction present in dialogue, the inclusion of native parables convey Igbo life authentically, the inclusion of native Igbo words and phrases, detailed descriptions of nature and the usage of figurative languageRead MoreChinua Achebe s Things Fall Apart1702 Words   |  7 PagesTitle: Things Fall Apart Biographical information about the author: Chinua Achebe was born in Nigeria in 1930. He had an early career as a radio host, and later became the Senior Research Fellow at the University of Nigeria. After moving to America, he became an English professor at the University of Massachusetts, Amherst. Achebe has won numerous awards for his poetry and fiction, including the Man Booker prize and Commonwealth Poetry Price. He currently teaches at Bard College. Author: Chinua AchebeRead MoreChinua Achebe s Things Fall Apart Essay1347 Words   |  6 PagesCulture is an Important Element of Society Chinua Achebe is the author of when Things Fall Apart while Joseph Conrad authored Heart of Darkness. Conrad and Achebe set their individual titles in Africa; Achebe is an African writer whereas Conrad is Polish-British. The authors draw strength from their backgrounds to validity the authenticity of their fictional novels. Conrad writes from his experiences in the British and French navies while Achebe uses his African heritage. The theme of culture isRead MoreChinua Achebe s Things Fall Apart1248 Words   |  5 PagesChris Lowndes Ms. Cook A.P.L.C. 21 October 2015 We Are Family: Hardships in One s Family in Things Fall Apart Specific attributes correlate with each other to help create or not create the ideal strong family. However, through those attributes arise conflicts and major disputes. This issue of trying to achieve and create a strong family is of immense importance in one’s life, especially in Chinua Achebe’s, Things Fall Apart, a milestone in African literature. For instance, the father leaves his legacyRead MoreChinua Achebe s Things Fall Apart Essay1682 Words   |  7 Pagescertain degree of the priest class, libation, holidays, creation stories, divine systems of punishments and rewards. In the novel, Things Fall Apart, written by Chinua Achebe, is a story of tragic fall of a protagonist and the Igbo culture. Achebe demonstrates different examples and situations of where an African culture, in the instances of tribal religions, did certain things because of their tradition is and the way they developed into. African cultures pondered life mysteries and articulated theirRead Mo reChinua Achebe s Things Fall Apart Essay983 Words   |  4 Pages The author Chinua Achebe, in the novel, â€Å"Things Fall Apart,† shares extreme diversity between the female and male characters residing in Umofia. Okonkwo, the male leader of the tribe, carries qualities such as power and manliness, as all men are expected to. As for the females they are commonly referred to as being weaker for child bearing and more responsible because they are expected to cook, clean, and take care of their children. Although the traits of the Igbo culture vary in the determination